Conducting Gender-Based Analysis of Existing Databases When Self-Reported Gender Data Are Unavailable: The Gender Index in a Working Population
Objectifs
Dans le domaine de la recherche en santé, une attention grandissante est portée à l’importance de tenir compte à la fois du sexe et du genre. Toutefois, ceci représente un défi quand on travaille avec des données existantes qui ne contiennent pas toujours de mesure autoraportée de genre. L’objectif de cette étude était donc de développer et valider un indice composite de genre grâce aux données de l’Enquête sur la santé dans les collectivités canadiennes (ESCC).
Méthodologie
Basé sur la littérature et l’opinion d’experts, le GENDER Index a été développé grâce à plusieurs variables contenues dans l’ESCC et potentiellement liées au genre (ex. occupation, recevoir une pension alimentaire, nombre d’heures travaillées). Chez les travailleurs de 18 à 50 ans n’ayant pas de données manquantes sur le plan des variables sélectionnées (n = 29 470 participants), des scores de propension ont été dérivés d’un modèle de régression logistique dans lequel les variables potentiellement liées au genre ont été incorporées comme covariables et le sexe biologique a été considéré comme variable dépendante. La validité conceptuelle des scores de propension obtenus (scores du GENDER Index) a ensuite été explorée.
Résultats
Sur le plan de la distribution des scores du GENDER index selon le sexe, les deux concepts se sont avérés semblables, mais indépendants. La proportion de femmes était différente selon les différents sous-groupes formés grâce aux tertiles du GENDER index (p < 0,0001). La validité conceptuelle a aussi été examinée en mesurant les associations entre les scores du GENDER Index et différentes variables liées au genre et identifiées à priori telles que le fait de choisir certains aliments en raison d’une préoccupation pour son poids corporel (p < 0,0001), le fait que les soins à donner aux enfants soient identifiés comme principale source de stress (p = 0,0309), ou la capacité à faire face à des problèmes inattendus et difficiles (p = 0.0375).
Conclusion
Le GENDER Index pourrait être utile pour renforcer la capacité des chercheurs à effectuer une analyse fondée sur le genre dans des populations de travailleurs grâce aux données de l’ESCC.